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Synthesis, Conformation, and Reactivity of Ethylene-Bridged [2.2.1]Metacyclophanes
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A series of ethylene-bridged [2.2.1]Jmetacyclophanes has been
synthesized. It was found out that they can adopt a new type of
"inward-folded" conformation depending on the substituent of
the one aromatic ring. This conformer exhibited different
reactivities from another "inward-folded" one of the non-bridged
[2.2.1}metacyclophanes.

Cyclophane chemistry dominates a major part of supra-
molecular chemistry, which is a new field attracting considerable
attention recently.!  During the course of our research on
cyclophanes, we have been interested in metacyclophanes
consisting of three aromatic rings because they can assume a rigid
or a flexible conformation depending on the slight difference in
the structure.

In this respect, the conformational features of [2.2.0]-,2
[2.1.1]-3 and [2.2.2]metacyclophanes* have been already
investigated. We have prepared various kinds of [2.2.1]meta-
cyclophanes and confirmed their "inward-folded" conformation,
which is characterized by one aromatic ring folding into the cavity
produced by two other aromatic rings.56  [2.2.1]Meta-
cyclophanes (1a,b) tend to adopt two kinds of "inward-folded"
conformations which have folded A ring and folded B ring,
respectively. Bridging two aromatic rings of [2.2.1]meta-
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Scheme 1.

Table 1. Chemical Shifts® of Bridged Metacyclophanes

Terminal Hof R fert-Butyl H(A) Aromatic Ha

Cyclophane p 3 2 3 2
a 650 7.03 134 130 726 7.06
b 219 0.80 132 140 722 704
c 293 381 141 066 726 595
d 088 1.17 132 059 723 589
e 060 1.49 139 065 729 595
f 070 1.18 133 066 732 596
g 068 — 135 — 722 —
h 082 1.07 130 082 731 596

4 CDCl3, 27 °C (8/ppm)

cyclophanes should produce a novel conformation.

Thus, we would like to describe here the synthesis, the
conformational property, and the reactivity of ethylene-bridged
metacyclophanes (4).

It seems difficult to build up a bridging portion in the cyclic
structure afterwards. We have already reported the facile
synthesis of dibenzocycloheptene (2)7, which has to be an
appropriate candidate as a building component for synthesis of
bridged metacyclophanes. Cyclization between 2 and mercapto-
methyl compounds under a high-diluted condition afforded the
corresponding dithiacyclophanes (3a-h) in 40-70% yields.

IH NMR spectra of 3a-h display characteristic feature as
summarized in Table 1. A pair of doublets for the CH2 bridge
was observed in the spectra of dithiacyclophanes except for 3a,
indicating that 3b-h exist in rigid conformations. The
temperature-dependent 1H NMR spectrum of 3a in CDCI3 gives
tise to a coalescence temperature of -45 °C, corresponding to an
inversion barrier of 10.1 kcal/mol. The terminal protons of R in
3d-h show a remarkable upfield shift, which probably arises
from a strong shielding effect of two aromatic rings of the
dibenzocycloheptene unit, thus it is deduced that these
cyclophanes adopt a "inward-folded" conformation with the
substituent R located in the cavity. Such a considerable upfield
shift for the protons of the substituents R in 3a-c¢ is not
observed, because these are not big enough to be subject to the
strong shielding effect. Taking into account the terf-butyl protons
showing a normal shift, it is predictable that 3a-c also assume a
similar conformation to 3d-h.

After oxidation of 3a-h pyrolysis was carried out to obtain the
cyclophanes 4a-h (Scheme 1). The desired cyclophanes (4a-f,
4h) were isolated in 20-35% yields. The cyclophane 4 g was not
obtained, which might be due to a bulky isopropoxy group. Itis
noted that the cyclophanes 4f and 4h carrying n-propoxy and n-
buthoxy group, respectively, were formed. These facts indicate
that the pyrolysis is much influenced by a slight difference in the
structure of R. In 4b methyl protons appear at 0.80 ppm, which
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can be explained by the methyl group existing in the cavity. Such
an upfield shift of methyl protons compared to the shift of those
in 3b is certainly due to a stronger shielding effect owing to the
smaller cavity size. It is considered that 4b assumes a similar
conformation to the dithiacyclophanes 3.

On the contrary, the terminal protons of the substituent R in
other cyclophanes (4c-h) show the NMR signals in the same
region as those in the corresponding substituted benzene
derivatives, indicating that the substituent R is accommodated
outside of the cavity. This is supposed to reflect another
"inward-folded" conformation in which one fert-butyl group
exists in the cavity. This is in fairly good agreement with a
considerable upfield shift for the protons of the zert-butyl group
and the protons neighboring the terr-butyl group. This
conformation is also established by the X-ray crystallography of
4e8. As shown in Figure 1, one fert-butyl group is obviously
located in the cavity formed by two aromatic rings.

Although the reason for 4¢-h to assume such a conformation
is not clear at the present, it might be attributed to the
recombination of radical intermediates in pyrolysis, that is, the
aromatic ring having the substituent R bigger than methyl group
could invert. The conformation of 4a is supposedly similar to
that of 4b, because upfield shifts of the ferr-butyl and the
aromatic protons were not observed in the spectrum of 4a.

Reactions of small and medium-sized cyclophanes are one of
the most interesting subjects, because a through-space interaction
among the aromatic rings is supposed to extensively affect the
reactivity.

To begin with, nitration was employed in the cyclophanes 1b,
4c, and 4d. Treatment of 4¢ with 65% HNO3 gave a mono-
nitrated compound Sa where one fert-butyl group of 4e¢ is
replaced via the ipso-nitration9 (Scheme 2); however, a similar
nitration of 1b or 4d only gave a inseparable mixture containing
some nitrated compounds. These results imply that other factors
than the para activation with the methoxy group should play a
decisive role in the nitration.

Yamato et all0 studied ipso-nitration of fert-butylated diphenyl
alkanes in detail, emphasizing stabilization of initial o-complex
intermediates by a through-space electronic interaction with the

inner tert-butyl group

Figure 1. Perspective view of 4e.
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Scheme 2.

other benzene ring. A similar effect should be involved in the
ipso-nitration presented here, because the fert-butyl group which
is ipso-nitrated exists in the cavity formed by two aromatic rings
of the dibenzocycloheptene unit leading to a stabilization of o-
complex intermediate. On the contrary, such stabilization cannot
be expected in 1b because of the fert-butyl group located outside
of the cavity. Formylation of 4¢ with dichloromethyl methyl
ether in the presence of TiClg also gave the ipso-formylated
product 5b in less than 20% yield.

Further investigation on reactivities of the new " inward-
folded" conformers of ethylene-bridged [2.2.1]metacyclophanes
is under progress in our laboratories.
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